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Introduction

The Src family kinases (SFKs), a family of nonreceptor 
tyrosine kinases, including Src, Yes, Lck, Fyn, Lyn, Fgr, Hck, 
Blk and Yrk, are involved in the regulation of a wide vari-
ety of normal cellular transduction pathways, such as cell 
growth, differentiation, survival, adhesion and migration 
[1], and are maintained in an inactive conformation in the 
absence of extracellular and intracellular stimuli. However, 
considerable evidences implicates elevated expression 
and/or activity of Src kinases in many human cancers (e.g., 
colon, rectal, or stomach cancer) [2,3], osteoporosis [4], 
cardiovascular disorders [5] and immune system dysfunc-
tion [6]. Thus, this family of protein tyrosine kinase now 
exists as intriguing targets for both basic research and drug 
discovery.

Currently, numerous efforts have been devoted to the 
design of Src kinase inhibitors, with most attentions through 
an ATP-competitive inhibition mechanism. Several Src 

kinase inhibitors have been identified to date. These include 
various heteroaromatic compounds, such as pyrazolopyri-
midines, pyrrolopyrimidines, pyridopyrimidines, quinazo-
lines, quinolines, indolinones, isoquinoline and others [7]. 
A series of 4-anilino-3-quinolinecarbonitriles developed by 
Boschelli and co-workers [8–10] exhibited potent Src kinase 
inhibiting activity. Considering the important role of Src 
kinase in regulating normal cellular functions and recent 
interest in development of such inhibitors, a QSAR inves-
tigation of these compounds is carried out. The objective 
of this study is to analyze the physicochemical and struc-
tural requirements of these inhibitors to exhibit optimal 
inhibitory potency of Src kinase which will in turn help in 
rationalizing the design of these molecules as Src kinase 
inhibitors, as well as to provide a strategy for predicting 
activities of novel 4-anilino-3-quinolinecarbonitriles with 
high accuracy.
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Abstract
Quantitative structure-activity relationship (QSAR) studies have been carried out on 4-anilino-3-quinolinecar-
bonitriles, a set of novel Src kinase inhibitors, with the aim of dissecting the structural requirements for Src inhibi-
tory activities. After outlier identification using robust principal component analysis (robust PCA), linear models 
based on forward selection combined with multiple linear regression, (FS-MLR), enhanced replacement method 
followed by multiple linear regression (ERM) and a nonlinear model using support vector regression (SVR) were 
constructed and compared. All models were rigorously validated using leave-one-out cross-validation (LOOCV), 
5-fold cross-validations (5-CV) and shuffling external validation (SEVs). ERM seems to outperform both FS-MLR 
and SVR evidenced by better prediction performance (n=35, R2

training = 0.918, R2
pred = 0.928). Robustness and pre-

dictive ability of ERM model were also evaluated. The generated QASR model revealed that the Src inhibitory 
activity of 4-anilino-3-quinolinecarbonitriles could be associated with the size of substituents in the C7 position 
and the steric hindrance effect. The results of the present study may be of great help in designing novel 4-anilino-
3-quinolinecarbonitriles with more potent Src kinase inhibitory activity.
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Materials and methods

Dataset and descriptors
The data set consisting of 37 4-anilino-3-quinolinecarbon-
itriles together with their Src kinase inhibitory activities, 
expressed as log(1/IC

50
), was obtained from references 

[8–10]. The structure of the compounds were drawn using 
MDL® ISIS/Draw (Symyx Technologies, Inc.) implemented 
in the ISIS 2.5 package and pre-optimized using molecu-
lar mechanics force field (MM+) encoded in HyperChem 
(Version 8.04, Hypercube, Inc.). The final refined equi-
librium molecular geometrics were obtained using the 
semiempirical method PM3 (Parametric Method-3). We 
chose a gradient norm limit of 0.01 kcal/Ao for the geom-
etry optimization. More than one thousand meaningful 
descriptors were calculated for each compound using 
E-Dragon version 1.1 [11], encoding different aspects of 
the molecular structures. These descriptors consist of 
constitutional, topological, electronic, thermodynamic, 
geometric descriptors, etc. Descriptors with same entries 
for most of the training compounds were removed from 
the pool of variables considered. Pairs of variables with 
correlation coefficients greater than 0.90 were considered 
as inter-correlated, and one of them in each correlated pair 
was deleted. Finally, the resulting data matrix was utilized 
for further analysis.

Robust PCA
Although principal component analysis (PCA) is a very 
popular dimension reduction technique, the results are 
highly affected by anomalous observations in the data. 
To avoid the sensitivity towards outliers, various robust 
PCA algorithms [12,13] have recently been developed. 
The algorithm of ROBPCA utilized in this study combines 
projection pursuit techniques with robust covariance 
estimation in lower dimensions and could be concluded 
as three stages: first, the data matrix is processed by 
reducing its data space to the affine subspace spanned by 
the number of observations; then a measure of outlying-
ness is computed for each data point, which is obtained 
by projecting the high-dimensional data points on many 
univariate directions; the last stage of ROBPCA consists 
of selecting the number of principal components (k) to 
retain and projecting the data points onto the k-dimen-
sional subspace spanned by the k largest eigenvectors 
and of computing their center and shape by means of 
the reweighted MCD estimator. The eigenvectors of this 
scatter matrix then determine the robust principal com-
ponents, and the MCD estimation estimate serves as a 
robust center. For visualization, we also represent the 
result of the PCA analysis by means of a diagnostic plot 
based on orthogonal distance and score distances. The 
orthogonal distance measures the distance between an 
observation and its projection in the k-dimensional PCA 
subspace, while the score distance is measured within the 
PCA subspace. Thus robust PCA might serve as a valuable 
tool for outlier detection [13,14], and any observations 
with large orthogonal distance or score distance would be 

identified as potential outliers. More information about 
ROBPCA algorithm could be obtained in reference [15]. 
ROBPCA is carried out by using the Matlab Toolbox [16] 
for Robust Calibration.

FS-MLR
For simplicity and interpretability, multiple linear regres-
sion (MLR) [17] was employed as the modeling method and 
a multiple-term linear equation is built step-by-step using 
forward selection (FS) strategy. To illustrate the process con-
cisely, two descriptor pools need to be defined first. Pool1 
indicates the descriptors which have been selected into the 
MLR model and pool2 deposits the remaining descriptors. 
In each step, the performance of each descriptor in pool2 in 
combination with those in pool1 is evaluated and the best 
one would be transferred from pool2 to pool1. The search 
process is terminated when stepping is no longer possible 
or when a specified maximum number of steps has been 
reached. FS-MLR model is achieved using JMP (Version 5.1, 
SAS.) with parameters of ‘Prob to Enter’ and ‘Prob to leave’ 
set default as 0.250 and 0.100, respectively.

ERM
Enhanced Replacement Method (ERM) is a modified ver-
sion of replacement method (RM) proposed by Andrew G. 
Mercader et al [18,19] for variable selection in linear mod-
els. For RM, it approaches the minimum of standard error 
of regression (S) by judiciously taking into account the 
relative error of the coefficients of the least-squares model 
given by a set of d descriptors. ERM follows the same RM 
philosophy but exhibits less propensity for remaining in 
local minima and at the same time is less dependent on the 
initial solution. More information of this algorithm could 
be obtained in reference [18]. ERM is run by using Matlab 
(Version 7.2b, The Mathworks, Inc.).

Support vector regression (SVR)
Support vector machine (SVM), developed by Vapnik and 
Cortes [20], as a novel type of machine learning method, is 
gaining increasing popularity due to many attractive features 
and promising empirical performances. Besides the basic aim 
of SVM for data classification, an extension of this algorithm 
named support vector regression (SVR) has been developed 
to address regression problems. Briefly, a regression task 
usually involves training and test data which consist of some 
data instances. Each instance in the training set contains one 
“target value” (property value) and several “attributes” (fea-
tures). The goal of SVM is to produce a model which predicts 
target value of data instances in the test set which are given 
only the attributes. In this study, SVR was performed with 
RBF as the kernel function. The parameters C and  were set 
default, with C=1 and =1/k, where k means the number of 
attributes in the input data. All calculations in this work were 
carried out by using Matlab (Version 7.2b, The Mathworks, 
Inc.) and the SVM toolbox was developed by Chih et al. [21] 
The calculations were performed on a 1.80GHz Intel Pentium 
Dual E2160 with 2G RAM under windows XP.
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Cross-validation
Cross-validation techniques [22,23] including leave-one-
out cross-validation (LOOCV) and 5-fold cross-validation 
(5-CV) were employed to evaluate the performance of 
both linear an nonlinear models. In LOOCV, only one sam-
ple is selected as the test set for each time, and the other 
samples are used as training set to predict the selected 
sample. The process is repeated until all the samples have 
been removed once. While for 5-CV, the whole dataset is 
classified into 5 subsets. Each time, samples in one of the 
subsets are selected as the test set, while remaining sam-
ples are used as training set to predict the test set. This 
procedure is repeated for 5 times until each subset has 
been removed once as the test set. However, because the 
5-CV results vary for each run due to random partition-
ing of the data set, the whole process is repeated for 20 
times to eliminate the effect of random sample partition-
ing in this study. The average result of the multiple cross-
validation runs provides an unbiased assessment of the 
model performance in predicting unknown compounds. 
The models were evaluated by measuring the prediction 
R2 (explained variance), RMS (root-mean-square error), 
and RSE (relative standard error), with the formulations 
shown as follows:

In the above equations, y
exp

 and y
pred

 are experimental and 
predicted log(1/IC

50
) values, respectively; n is the number 

of samples in the data set of interest. d is the number of 
variables.

External validation, shuffling external validations  
and training set selection
It needs to be emphasized that no matter how robust, sig-
nificant and validated a QSAR model may be, it can not be 
expected to reliably predict the modeled activity for the 
entire universe of compounds. Therefore, the perform-
ance of the selected descriptors was further evaluated by 
external validation. However, it is also well known that a 
QSAR model’s ability to predict the properties of unknown 
chemicals depends largely on the nature of the training 
set and a model’s predictive accuracy and confidence for 
different unknown chemicals varies according to how well 
the training set represents the unknown chemicals. Thus 

28 representative compounds were carefully selected as 
the training set using principal component analysis (PCA), 
taking sample distribution into consideration.

Moreover, considering the fact that the results of exter-
nal validation are to some extent highly unstable due to 
the different selection of training sets, we also employed 
shuffling external validations (SEVs) to eliminate as 
most as possible the effect of different training sets and 
to evaluate model performance in a more objective way. 
Concisely, in each shuffling, 28 compounds are randomly 
selected as training set and the others as test set, ensur-
ing that activity of compounds in the training set covering 
the range of 5.400 to 9.120. This procedure is repeated 20 
times to eliminate the effects of random selection of train-
ing samples, with the averaged results used for model 
evaluation.

Y-randomization and predictive ability analysis  
of ERM model
Y-randomization analysis [24] is implemented for further 
ensuring the robustness of ERM model. The dependent 
variable (log(1/IC

50
) values) is randomly shuffled and a 

new QSAR model is developed using the original inde-
pendent variable matrix. The new QSAR models (after 
several repetitions) are expected to have low R2, high 
RMS and S. If the opposite happens, then an acceptable 
QSAR model cannot be obtained for the specific modeling 
method and data.

According to the Tropsha et al. [25], the predictive power 
of a QSAR model can be conveniently estimated by the 
following equations:

Calculations relating to R2
cv,ext

, R
o

2 and the slope k and k’ are 
based on regression of observed values against predicted 
values and vice versa. They were discussed in detail in refer-
ence [25,26].

Results and discussion

As a first step, robust principal component analysis (robust 
PCA) was performed on a complete set of 37 4-anilino-3-
quinolinecarbonitriles to ensure whether potential outliers 
exist in this data set. The resulting plot of orthogonal distance 
versus score distance is illustrated in Figure 1, where large 
deviations from the cluster center for samples 36 and 37 
indicate the potential outlying nature of these compounds. 
Restated, large orthogonal distance indicates the large 
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deviation between these two compounds to their projec-
tion in the k-dimensional PCA subspace, while large score 
distance implies a large distance between the projections of 
them to that of the other samples in the k−dimensional PCA 
space. Thus samples 36 and 37 are removed from further 
analysis as potential outliers.

The biological activity values [IC
50

 (nM)] reported in the 
literature were converted to molar units [mol/l] and then 
further to –log scale and subsequently used as the response 
variable for the QSAR analysis. The log(1/IC

50
) values, along 

with the structure of all compounds including outliers are 
presented in Table 1. The compounds excluding outliers 
were divided into training and test sets containing 28 and 7 
molecules respectively, with the detailed distribution shown 
in Figure 2. The training set has been used for QSAR model 
development and the test set was used to test the ability of 
developed QSAR model in predicting the Src kinase inhibit-
ing activity.

Linear models (FS-MLR, ERM)
For simplicity and interpretability, multiple linear regression 
model was developed using both forward selection (FS) and 
enhanced replacement method (ERM) as variable selection 
strategy. For each model, a specific set of four descriptors 
were finally involved. The resulting regression model com-
bined with forward selection was as follows:

log(1/IC
50

) = �30.235(±4.241)−3.971(±0.428)*J3D 
−12.870(±2.347)*PCR + 2.120(±0.357)  
*Mor25v + 193.540(±43.886)JGI6

n = 28, R2 = 0.886, RMS = 0.268, RSE = 0.033 (training set)
n = 7, R2 = 0.892, RMS = 0.263, RSE = 0.033 (test set)

ERM in combination with MLR results in a better regression 
model, with the equation shown as follows:

log(1/IC
50

) = �3.165(±0.767) −0.051(±0.008) * RDF060e  
+ 447.060(±47.477) * JGI6 −1.931(±0.281) 
*Mor23v −348.267(±85.804)*JGI9

n = 28, R2 = 0.918, RMS = 0.228, RSE = 0.028 (training set)
n = 7, R2 = 0.928, RMS = 0.241, RSE = 0.030 (test set)

In the models above, n is the number of compounds, R2 
is explained variance, RMS is root mean square error and 
RSE is relative standard error. The figures given in the 
parentheses with ± sign in the model are 95% confidence 
limits. It should be noted that the same training and test 
sets are utilized for FS-MLR and ERM, which ensures the 
comparability of both models. Since ERM outperforms FS 
as a variable selection strategy evidenced by significantly 
higher value of R2, only the results obtained using ERM 
would be illustrated in detail. For visualization, a graphi-
cal representation of the experimental versus predicted 
log(1/IC

50
) values, as well as the residuals, is illustrated in 

Figures 3 and 4, respectively. The detailed information of 
selected descriptors is shown in Table 2. As a confirmation, 
the model mentioned above was also utilized to predict 
samples 36 and 37. The abnormal large residuals for both 
samples shown in Figure 4 confirmed their outlyingness to 
a large extent.

Nonlinear model (SVR)
Support vector regression (SVR) is an extension of sup-
port vector machine (SVM), with the aim of addressing 
regression problems. For SVR, forward variable selec-
tion method was also employed. By stepwise addition 
of the most important descriptors, the best SVR model 
was achieved when another four descriptors (RDF150e, 
Mor18u, C-025, C-034) were involved, with R2

training
 = 0.855 

and R2
test

 = 0.804 for samples in training and test sets, 
respectively. Descriptors utilized in SVR are also illus-
trated clearly in Table 2.

Models validation and comparison
Cross-validation techniques including LOOCV and 5-CV 
were employed to evaluate the performance of these 
models. However, it needs to be emphasized that the real 
performance of any model could only be revealed using 
an external validation set. Therefore, the performance of 
these models was further evaluated by external valida-
tion. The detailed validation results are shown in Table 3, 
demonstrating that despite the much more sophisticated 
algorithm of SVR, ERM significantly outperforms SVR and 
FS-MLR with better performances. Considering that such 
inferiority of SVR could also be due to the selection bias of 
training samples, shuffling external validations (SEVs) was 
also implemented. The superiority of this method to the tra-
ditional external validation could be concluded as follows: 
first, compared to the random selection of training samples 
utilized in traditional external validation, this method takes 
sample distribution into consideration, ensuring samples 
in the training set covering the activity range of 5.400 to 
9.120 in each shuffling; Moreover, average of 20 shuffles is 
chosen as the final external validation result, excluding to 
a large extent the bias resulted from different selection of 
training samples. The results of SEVs demonstrated in Table 
3 confirmed the significantly better performance of ERM. 

Figure 1.  Orthogonal distance versus score distance for 37 samples using 
robust PCA.
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Thus only descriptors selected in ERM model would be 
extensively discussed.

Y-randomization and predictive ability analysis  
of ERM model
Y-randomization analysis is implemented for further ensur-
ing the robustness of ERM model, with detailed results shown 
in Table 4. The low R2 and high RMS indicate that the good 
results in our models are not due to a chance correlation 

or structural dependency of the training set. Finally, the 
ERM model also passed the predictive ability analysis, with 
detailed results illustrated in Table 5.

Explanation of molecular descriptors
Considering the significantly better performance, only 
descriptors selected in ERM model would be extensively dis-
cussed in this study. The inter-correlation of these descrip-
tors was evaluated and illustrated in Table 6, indicating 

Table 1.  Compound, experimental and calculated log(1/IC
50

) values, as well as corresponding residuals based on ERM model.

ID isomer X Y n NRR’ IC
50

(nM)

log(1/IC
50

)

Obsd. Calcd. residual

1a 3,5 S H 1 morpholine 2.7 8.569 8.801 0.232

2 2,5 S H 1 morpholine 2.5 8.602 8.455 −0.148

3 2,4 S H 1 morpholine 5.7 8.244 8.420 0.176

4 3,2 S H 1 morpholine 440 6.357 6.381 0.024

5a 3,4 S H 1 morpholine 240 6.620 6.647 0.027

6a 3,5 S H 1 N-Me-piperazine 3.8 8.420 8.549 0.129

7 3,5 S H 1 N-OH-piperazine 1.4 8.854 8.314 −0.540

8 2,5 S H 1 N-Me-piperazine 3.8 8.420 8.174 −0.246

9a 2,5 S H 1 N-OH-piperazine 2 8.699 8.608 −0.091

10 2,5 S H 1 piperidine 4.2 8.377 8.435 0.058

11 2,5 S H 1 thiomorpholine 4.4 8.357 8.566 0.209

12a C-6 isomer of 1 280 6.553 6.529 −0.024

13 1,3  OMe 1 morpholine 150 6.824 7.136 0.312

14 1,4  OMe 1 morpholine 15 7.824 7.697 −0.126

15 1,4  OMe 1 N-Et-piperazine 7 8.155 8.310 0.155

16 1,3  OMe 2 morpholine 74 7.131 7.259 0.128

17 1,4  OMe 2 morpholine 11 7.959 8.161 0.203

18 1,3  H 1 morpholine 28 7.553 7.348 −0.205

19 1,4  H 1 morpholine 3.3 8.481 8.154 −0.327

20 1,4  H 1 N-Et-piperazine 3 8.523 8.343 −0.180

21 1,3  H 2 morpholine 29 7.538 7.588 0.050

22 1,4  H 2 morpholine 14 7.854 7.773 −0.081

23 1,4  H 2 N-Et-piperazine 3.7 8.432 8.070 −0.362

24a 1,3  H 1 N-Me-piperazine 14 7.854 7.956 0.102

25 1,4  H 1 N-Me-piperazine 3.8 8.420 8.604 0.184

26 1,4  H 1 N-(CH
2
)

2
OH-piperazine 4.7 8.328 8.713 0.385

27 1,2  H 1 morpholine 4000 5.398 5.601 0.203

28 3,5 S H 1 N-Me-piperazine 3.8 8.420 8.565 0.145

29 2,5 S H 1 N-Me-piperazine 2.3 8.638 8.694 0.056

30 3,5 O H 1 N-Me-piperazine 2.7 8.569 8.753 0.185

31 2,5 O H 1 N-Me-piperazine 7.5 8.125 7.802 −0.323

32 3,5 O OMe 1 N-Me-piperazine 0.78 9.108 9.021 −0.087

33 des 5-OMe of isomer of 30 11 7.959 8.249 0.290

34 C-6 isomer of 30 84 7.076 6.938 −0.138

35a 3,5 O OMe 1 morpholine 1.5 8.824 8.257 −0.567

36b 3,5 O OMe 1 NMe2 0.75 9.125 7.339 −1.786

37b 3,5 O OMe 1 N-Ph-piperazine 3.6 8.444 9.545 1.101

‘a’ indicates samples in the test set, while ‘b’ indicates outliers.

Cl Cl 

O 
CN 

HN 

Cl Cl 
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CN 

HN 

N N 2 
3 

Y Y 

X 1-12, 28-37 13-27 
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no significant information overlapping among them. For 
evaluating the significance of each descriptor, we ranked 
the descriptors in ERM model according to their effect on 
increasing the value of S when removed from the model. In 
this case, the order found is:

JGI6 > Mor23v > RDF060e > JGI9

The most important descriptor JGI6 and the least one JGI9 
belong to the family of topological charge index JGI. [27,28] 
Galvez Charge Indices GGIk and JGIk are defined as:

where N is the number of vertices (atoms different to hydro-
gen) in the molecular graph, and k the length of each path. 
CT

ij
= m

ij
-m

ji
. ‘m’ stands for the elements of the M matrix, 

M=A×D*, A is the adjacency (N×N) matrix of the molecular 
graph, D* is the inverse square distance matrix, in which 
their diagonal entries are assigned as 0, and  is Kronecker’s 

delta. Thus, JGIk represents the average of the CT
ij
 terms, 

with D
ij
=k, being D

ij
 the entries of the topological distance 

matrix (D). In the Charge Indices terms, the presence of 
heteroatoms is taken into account by introducing their 

Table 2.  Molecular descriptors selected in models.

Type
Molecular 
descriptor Description

3D-MoRSE 
descriptors

Mor23v 3D-MoRSE - signal 23 / weighted by 
atomic van der Waals volumes

Mor18u 3D-MoRSE - signal 18 / unweighted

Mor25v 3D-MoRSE - signal 25 / weighted by 
atomic van der Waals volumes

RDF descriptors RDF060e Radial Distribution Function −6.0 
/ weighted by atomic Sanderson 
electronegativities

RDF150e Radial Distribution Function −15.0 
/ weighted by atomic Sanderson 
electronegativities

Topological charge 
indices

JGI6 mean topological charge index of 
order6

JGI9 mean topological charge index of 
order9

Geometrical 
descriptors

J3D 3D-Balaban index

Walk and path 
counts

PCR ratio of multiple path count over 
path count

Atom-centred 
fragments

C-025 R–CR–R

C-034 R–CR–X

RDF, radial distribution function.

Table 3.  Statistical results of performance validation.

 LOOCV 5-CV

External validation

SEVstraining test

FS-MLR R2 0.861 0.854 0.886 0.892 0.832

RMS 0.304 0.311 0.268 0.263 0.285

RSE 0.038 0.039 0.033 0.033 0.036

ERM R2 0.890 0.880 0.918 0.928 0.872

RMS 0.271 0.282 0.228 0.241 0.239

RSE 0.034 0.035 0.028 0.030 0.030

SVR R2 0.698 0.638 0.855 0.804 0.607

RMS 0.448 0.491 0.302 0.399 0.449

RSE 0.056 0.061 0.038 0.050 0.056
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electronegativity values in the corresponding entry of the 
main diagonal of the adjacency matrix. These indices rep-
resent a strictly topological quantity plausibly correlating 
with the charge distribution inside the molecule. In other 
words, the topological distance of substituents in C7 posi-
tion plays an important role in determining the Src inhibi-
tory activity. The positive coefficient of JGI6 indicates that 
the more the substituents with path lengths of 6, the higher 
the Src inhibitory activity might be, while the negative sign 
of JGI9 indicates an opposite effect, when path length is 9. 
This distribution is an important property, which condi-
tions the behavior of many physiochemical and biological 
properties.

The 3D-MoRSE type of descriptor is obtained consid-
ering a molecular transform derived from an equation 
used in electron diffraction studies. [27,29] The electron 
diffraction does not directly yield atomic coordinates, 
but provides diffraction patterns from which the atomic 
coordinates are derived by mathematical transformations. 
These codes are defined in order to reflect the contribu-
tion at a prescribed scattering angle of an atomic property 
such as mass (m), polarizability (p), electronegativity (e) 
or volume (v) to the property under investigation, and 
so enabling to differentiate the nature of atoms. Mor23v, 
with the scattering angle of 23 å−1, is weighted by atomic 
volumes, and the negative coefficient might indicate the 
adverse molecular volume in improving the Src inhibitory 
activity.

RDF060e [27,30] belongs to the family of radial dis-
tribution function, which can act as a structure coding 
technique referred to as radial distribution function code 
(RDF code) to transform the 3D coordinates of the atoms 
of molecules into a structure code that has a fixed number 

of descriptors irrespective of the size of a molecule. Radial 
distribution function provides, besides information about 
interatomic distances in a whole molecule, the oppor-
tunity to gain access to other valuable information, for 
example, bond distance, ring types, planar and nonpla-
nar systems and atoms types. RDF060e has a negative 
influence in the studied property, possibly decreasing the 
Src kinase inhibiting activity. This descriptor is weighted 
with atomic Sanderson electronegativities, and most sig-
nificantly, this descriptor is corresponding to a sphere 
radius of 6.0 angstroms. Formally, the radial distribution 
function of an ensemble of n atoms can be interpreted as 
the probability distribution to find an atom in a spherical 
volume of radius R. In this sense, according to our ERM 
model, a spherical molecular volume with this dimension 
could have certain restrictions to the addition of sub-
stituents. This interpretation suggests that substituent in 
C6 position of 4-anilino-3-quinolinecarbonitriles might 
contribute negatively to the Src inhibitory activity when 
bulky substituents exist in C7 positions at the same time. 
This observation agrees with the explanation reported by 
Berger et al [9] .

Conclusions

Summarizing the above discussion, the present study gives 
rise to QSAR model with good statistical significance and 
predictive capacity for Src kinase inhibitory activity of 
4-anilino-3-quinolinecarbonitriles. The result of this study 
suggests that the variables like RDF060e, Mor23v, JGI6 and 
JGI9 index play an important role in defining such inhibi-
tory activity. The analysis, based on validation procedures, 
offers not only an accurate strategy for predicting Src inhib-
itory activity of novel 4-anilino-3-quinolinecarbonitriles, 
but also a useful guidance to synthesize novel analogs with 
potent activity against Src kinase.
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